在教学反思中,我们要学会分析教学中的问题,只有不断的撰写教学反思,才能使教学技能得到提升,白领范文网小编今天就为您带来了长方体一教学反思最新7篇,相信一定会对你有所帮助。
长方体一教学反思篇1
在教学这节课之后,我有以下几点感受:
一、教师应该成为课程的创造者和开发者
教师从教教材,到用教材教,是一种观念和方法的转变;从用教材中的材料教,到选择、设计合适的材料教,更是一种创造和发展。本节课教学内容是在学生学完长方体和正方体的体积的基础上,充分运用知识的迁移规律,引导学生掌握新知识。让学生通过观察、思考自己发现总结出统一计算公式,并熟练掌握长方体和正方体的体积计算。我认为选择这样的材料不仅有助于学生的发展,也有助于数学学习材料的发展,能促使学生积极思维,有利于组织学生积极主动地投入学习。教师不应该仅仅是课程的实施者,而且应该成为课程的创造者和开发者。
二、学生拥有不可估量的潜力
把学生当作接受知识的容器的时代似乎已经过去。但学生能不能进行探究式的、自主发现式的学习,并不那么为大家的行动所接受。我们的教育基本上还是以接受学习作为主要的学习方式。学生能不能解决那些连成人都会感到困惑的问题?当我们把问题“v=sh这个公式,在实际计算中哪些地方能应用到?”展现在学生面前时,发现并不如我们所预料的:学生无法解决。但是我相信学生确实拥有不可估量的潜力,只要我们为学生创设出一个能展现他们才能的时间和空间,隐藏在学生头脑中的潜力就会如埋藏在地下的能量喷涌而出。关键是要给学生留有较大的时间和空间。一个问题的解决需要时间和空间,只有给学生留有较大的时间和空间,学生才能有所发现、有所创造。
当然,每一节课的教学时间是有限的,在有限的时间内,能不能把尽可能多的时间和空间留给学生学习?再说,今天给学生留有了充足的时间和空间,学生得到了很好的.发展,那么,在今后学生就会有更大的收获和发展。欲速则不达,我们现在的教育不就是常常为了急于求成,造成留给学生要记忆的东西不少,学会思维的东西却不多这一大遗憾吗?
三、要让学生自主学习自主发展
“授人以鱼不如授人以渔”,这是一种不错的教学。近日听到有人说:“授人以渔不如授之以渔场。”我很赞同这样的说法。这节课,我基本上没有讲,整堂课都体现了学生的参与。要开发学生的潜力,教师可以为学生准备必要的条件,但完全不必为学生准备充分的条件。我们只要为学生提供一个“渔场”,让学生在实践中成长。学生才能真正自主学习、自主发展。
长方体一教学反思篇2
1、让学生主动参与,亲身实践,合作探究,实现学习方式变革。
充分利用学生已有的生活经验,从观察实物------土豆,来丰富表象,再让学生动手操作------切成长方体,来提高感性认识,最后通过交流、反思等活动中逐步让学生体会数学知识的产生形成和发展过程,学生在观察中理解,在操作中感知,不仅拓宽了思路,获取了新知识,而且沟通了知识的内涵,领悟了学习方法,转变学习方式,激活学习热情,达到全员主动参与“学数学”目的,培养了学生的学习能力。
2、让学生经历“学数学”过程,要发挥好教师的“主导”作用。
本案例教学中,教师始终把学生置于主体地位,积极引导学生通过看、摸、想、议、切、说等学习过程,让学生亲身经历数学知识的“再发现”、“再创造”过程,调动学生的学习主动性和积极性,在学知识过程中既发展了空间观念,又培养了能力;既培养独立思考能力,又培养了合作交流的能力,让学生感受到成功的喜悦。教师起着组织者、指导者、帮助者和促进者的作用。
3、让学生经历“学数学”的.过程,其核心问题是“学会思考”
让学生学会数学地思考,是数学课程的重要目标之一,而积极有效的思考依赖于合适的、富有挑战性的问题。依据知识自身的重点和学生已有的知识经验,改呈现知识为呈现问题,能吸引学生充分参与数学学习过程,自觉调动已有的知识经验和心智技能,从而促使数学学习活动有效地展开并不断深入。
苏霍姆林斯基说过,在人的内心深处都有一种根深蒂固的需要这就是希望自己是一个发现者、研究者、探索者,在儿童精神世界中,这种需要特别强烈。因此,数学教学要努力创建有利于学生主动探索的数学教学环境,关注学生的自主探索和合作学习,使学生在获取作为一个现代公民所必需的数学知识和技能的同时。在情感、态度和价值等方面得到充分发展,立生积极的情感体验,进而创造性地解决问题
用《数学课程标准》来教学,必须让孩子们体会到数学的价值,学会运用数学的思维方式去观察、分析现实社会,解决日常生活中的问题,形成勇于探索、勇于创新的精神。总之,数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。真正体现新的课程理念,让学生“学数学”是一个生动活泼的、主动的富有个性的过程。
长方体一教学反思篇3
本课学习之前,孩子们们已经掌握了长方体体积的计算公式v=abh和正方体体积的计算公式v=a3,为了沟通这两个公式之间的联系,减轻学生记忆的负担,培养学生的抽象概括能力,也为以后学习柱体体积计算公式打下基础,本节课学习长方体和正方体统一的体积公式,即底面积乘高。
课始我引入了古代数学家计算长方体体积的方法引入:
西汉末年我国古代数学家编撰了一本不朽的传世名著《九章算术》。这本书共九章,其中一章叫商功章,它收集的都是一些有关体积计算的问题。书中是这样叙述有两个面是正方形的长方体体积的计算方法的:“方自乘,以高乘之即积尺.”就是说,先用边长乘边长得底面积,再乘高就得到长方体的体积。
目的是想让孩子们知道两千多年前,我国古代数学家已经明白了怎么计算长方体的体积,让他们明白我们在此基础上学习肯定能学得更出色,从而激发孩子们学好数学知识的情感。
接着围绕四个问题展开讨论:
(1)看完这段叙述,你想到什么?
(2)这段文字中描述的长方体有什么特征?底面积指的是哪一个面的'面积?
(3)古代数学家是怎样计算长方体体积的?它与我们今天掌握的计算方法相同吗?为什么?
(4)怎样将这个长方体变成一个最大的正方体?它的体积怎样计算?
这四个问题为孩子们思考、交流并推出长方体、正方体的体积计算统一公式起了一个导航的作用。它加深了学生对长方体、正方体特征及之间的关系的认识,渗透了几何变换的思想方法,也让孩子们感受我国数学的源远流长。
在第三个问题的交流中,我主要引导学生将自己掌握得长方体和正方体体积计算公式和古代数学家总结出来的底面积乘高进行对比,在交流对比中明白长乘宽或者棱长乘棱长其实就是底面积,之后,在调整中概括出长方体和正方体统一的体积计算公式。这次对比,使孩子们对原有的计算公式进行了重组,使他们对柱体体积计算方法也有了一个基本的认识,也为日后学习各种柱体体积奠定了基础。
长方体一教学反思篇4
?长方体和正方体》这一单元是学生由平面图形到立体图形的一次过渡,也是学生学习其它立体图形的基础。是学生对图形认识的一个转折点,它从平面图形过渡到立体图形,从计算面积到计算体积,而且对于学生空间观念的发展更是一个质的飞跃。特别是对于那些构建空间念能力薄弱的学生来说,本单元的学习是有一定难度的。而对长方体正方体特征的充分认识就显得尤为重要了。虽然说长方体在学生的身边随处可见,但是要发现它的特征,还是不怎么容易的。
在教学本课时,我针对几何知识教学的特点以及小学生以形象思维为主,空间观念薄弱的特点,本课多次让学生动手操作实践,让学生在看一看、量一量、摸一摸等实际操作中不断积累空间观念,并运用多媒体课件辅导教学。在认识长方体特征的基础上,利用学习迁移,自主讨论正方体的特征,再比较长方体与正方体之间的异同。明确它们的内在联系,最后用学到的新知解决一些实际问题。通过一系列有序活动培养学生动口、动手、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。
1、关注学生已有的知识和经验,创设情境,激发兴趣。
先让学生说说生活中哪些物体的形状是长方体或正方体的.,关于长方体和正方体已经了解了哪些知识。然后根据学生的回答组织教学。然后通过实物让学生观察。
2、加强动手操作,直观感知。
1)让学生找生活中的长方体(正方体)实物,认识面、棱、顶点。首先:用手摸面,是按什么顺序的,摸到了多少个面。然后再摸相邻的两个面相交的那一条边。师生一块感受摸到的感觉。形成棱的概念。并数一数一共有多少条棱?再通过摸三条相邻的棱相交的那一点,形成顶点的概念,接着数出顶点的个数。
2)探究面、棱的位置及大小关系。首先教师指出长方体框架中任意一条棱,请学生指出与其相等的另外几条棱,然后说出这几条棱的位置关系。这一环节重点认识相对的位置关系。然后验证相对的棱是否相等。进一步推导相对面的大小关系。
问题:相对的棱有几条?他们是否相等?
你发现相对的面大小有什么关系并说明理由?
再出示探究要求,使小组合作达到分工有序,目的明确,力争做到人人参与。
本活动设计利用学生探究到的数据进行进一步推理,归纳,从而培养学生的类推能力。在
总结
长方体特征后,教师直接指出相交于一点的三条棱的长度叫做长方体的长、宽、高。然后说出自己手中的长方体的长宽高各是多少。
3)认识正方体特征。
1)展示动画图像:
第一步:长方体中的长边缩短,使长、宽、高相等;
第二步:长方体中的短边伸长,使长、宽、高相等。
看一看新得到的长方体与原来长方体比较有什么变化?请同学取出自己准备的正方体,(也叫立方体)观察,对照长方体的特征来研究正方体的特征。学生讨论、归纳后,教师板书:正方体:
面:6个完全相同的正方形。
棱:12条棱长度都相等。
顶:8个。
4)在练习中掌握和拓展知识
长方体一教学反思篇5
在教学“长方体和正方体的认识”一课时,在学生认识了长方体和正方体的“正面”、“上面”“侧面”以后,我让小组自由讨论“站在不同位置看老师的讲桌,最多能看到几个面?”为了便于观察,我允许孩子们可以自由走动,寻找答案。看着他们在讲台边快乐地转来转去,我沾沾自喜:“站在不同位置看讲台,最多能看到3个面”的正确答案马上就可以水到渠成了。谁知在反馈时有的学生告诉我“站在不同位置看讲台,最多能看到3个面”,而有的学生告诉我“站在不同位置看讲台,最多能看到5个面”,更有甚者,报的数更多,全班学生就这样分成了几派,相持不下。
见局面一时不好控制,我严肃地重复着第二种回答:“请同学们再认真观察,真的最多能看到5个面吗?”这一反问,那些认为能看到5个面的学生顿时一愣,继而默然地垂下了头,虽然有个别同学暗地里仍然不服气地自言自语“没错嘛,就是5个面”,然而更多的则是沉默,不作声,课堂上因为老师严肃的一问全然没有了刚才相持,争论的气氛,我顿觉师威的负面力量,于是我及时调整了心态,微笑着绕着讲台转了一圈,自言自语地说:“看来5个面也蛮有可能的嘛,谁愿意当小老师上来说说到底最多能看到几个面?”于是气氛又活跃了起来,几派学生争着上来讲解示范,就在他们讲解示范的争论中,突然有一个学生发现新大陆似的嚷起来:“老师,我知道他们为什么是五个面了,他们算的是两次观察的和”,学生们顿时恍然大悟:“噢,原来他们算的是一次最多能看到几个面,而我们算的是合起来最多能看到几个面,难怪会不一样啦.”话音刚落又有一个学生激动地喊起来“老师,老师,我也发现了,书本上这个问题提得不好,它没有讲清楚是算一次还是算合起来的。”众生附和,我被这一连串的知道、发现愣住了,再仔细地读了读课本上的那句话“站在不同位置看讲台,最多能看到几个面?”的确,问题中没强调一次,那就既可以理解为一次最多能看到几个面,也可以理解为合起来最多能看到几个面。当时我一激动,也不管学生的观点是对是错,至少这些学生认真思考,敢于批判书本权威的精神是值得赞赏的,于是我及时表扬了这些学生。.这时一个学生若有所悟地大声自言自语“原来,书本也会有错啊,以后我可一定要认真思考。”
教育教人求真,学习要先学做真人。21世纪的教育,呼唤思考型的人才,因而教师的'职责已转变为越来越少地传递知识,而是越来越多地激励思考,成为孩子们学习的顾问,一位交换意见的参与者,一位帮助发现矛盾论点,鼓励挑战权威而不是拿出现有真理的人。至少,我庆幸自己当时没有以师威压人,把自己认为正确的答案硬生生的塞到学生脑中,而是鼓励学生进行独立观察,发表独特见解,从而激发了他们科学批判权威的勇气,并从中认识到思考的重要性。
长方体一教学反思篇6
长方体和正方体的认识是一节以学生活动为主的教学,教者在教学设计时有所创意。
一、通过活动与感受认识长方体。
客观世界中存在着各种各样实物,其中不少形体是长方体的。本课的第一个活动就是让学生说出生活中是长方体的实物(学生已学过长方体的初步认识),作为研究的对象。
接着,学生边观察边双手抚摸、玩弄长方体的物体,,感受长方体的形式,为进一步对长方体作科学的认识打好基础。
二、以模型为依托,对长方体做几何学分析,发展逻辑思维。
所谓对长方体作几何分析,是指知道长方体和正方体都有6个面、12条棱和8个顶点,研究面与面、面与棱的关系,棱与棱、棱与顶点的关系,以及长方体与正方体的关系等。每个学生手中都模型,教学时,学生随着老师的指点,仔细观察模型,用手指点数面、棱、顶点的数目,观察什么是相对的面,棱又怎样分成长度相等的3组,长方体的三条棱怎么相交于一个顶点,等等。
在观察和计数长方体有几个面、几条棱、几个顶点时,必须根据一定的顺序才能做到不重复、不遗漏;在观察和讨论前、后的面、左、右的面,上、下的面,面积分别相等,从而概括出“三组相对的面面积分别相等”,以及比较长方体与正方体的`异同,从而明确它们之间的关系等教学过程中,有了形象思维支持,有利于逻辑思维的发展。
通过想象,构想特定的长方体的空间存在形式,培养学生的形象思维能力。在对长方体(正方体)的整体结构进行了分析之后,还必须把分析的结果综合为整体。
长方体一教学反思篇7
长方体表面积的计算是在学生认识并掌握了长方体和正方体特征的基础上教学的。本节课让学生自己去尝试,发现长方体表面积的不同计算方法。学生学得轻松、愉快而扎实。让学生经历知识的获得过程,经历思维的形成过程,充分凭借学生的已有知识,提出问题,解决问题。使学生在讨论、探索、思考、表达、交流中得到发展,课后反馈效果很好。
在思考、讨论中步步为营。在教学中,对长方体表面积的计算,教师从学生已有经验长方体的认识引入,先让学生回顾长方体的特征,如:让学生拿出准备的长方体纸盒,按照一定的位置在六个面上分别表明前、后、左、右、上、下;想一想:根据长方体棱的特征,我们可以八长方体的12条棱分成几组?怎么分?为什么?同桌之间互相指一指长方体的长、宽、高等。在每一个细小问题的思考、讨论、交流中都给学生足够的时间和空间,让学生自主地对每个环节知识的掌握都落实到位,并为后面的知识作好循序渐进的铺垫,让学生在这种环环相扣、步步为营的学习过程中,顺其自然地掌握方法、解决问题、获得发展。
长方体一教学反思最新7篇相关文章: