必修二数学教案5篇

时间:
couple
分享
下载本文

通过提前准备好教案,我们可以更好地规划教学资源和使用教学工具,编写教案可以帮助教师准备好所需的教学资源和教具,提高教学效果,白领范文网小编今天就为您带来了必修二数学教案5篇,相信一定会对你有所帮助。

必修二数学教案5篇

必修二数学教案篇1

教学目标

进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式。

教学重难点

教学重点:熟练运用定理。

教学难点:应用正、余弦定理进行边角关系的相互转化。

教学过程

一、复习准备:

1、写出正弦定理、余弦定理及推论等公式。

2、讨论各公式所求解的三角形类型。

二、讲授新课:

1、教学三角形的解的讨论:

①出示例1:在△abc中,已知下列条件,解三角形。

分两组练习→讨论:解的.个数情况为何会发生变化?

②用如下图示分析解的情况。(a为锐角时)

②练习:在△abc中,已知下列条件,判断三角形的解的情况。

2、教学正弦定理与余弦定理的活用:

①出示例2:在△abc中,已知sina∶sinb∶sinc=6∶5∶4,求最大角的余弦。

分析:已知条件可以如何转化?→引入参数k,设三边后利用余弦定理求角。

②出示例3:在Δabc中,已知a=7,b=10,c=6,判断三角形的类型。

分析:由三角形的什么知识可以判别?→求最大角余弦,由符号进行判断

③出示例4:已知△abc中,,试判断△abc的形状。

分析:如何将边角关系中的边化为角?→再思考:又如何将角化为边?

3、 小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化。

三、巩固练习:

3、作业:教材p11 b组1、2题。

必修二数学教案篇2

一、教学内容分析

教材地位:幂函数是中学教材中的一个基本内容,即是对正比例函数、反比例函数、二次函数的系统总结,也是对这些函数的概况和一般化、

教学重点:幂函数的图像与性质、

教学难点:以幂函数为背景的图像变换、

二、教学目标设计

能描绘常见幂函数的图像,掌握幂函数的基本性质;理解幂函数图像的演进及单调性质;理解幂函数图形特征与代数特征的对称联系,在函数性质的应用中体会它的价值。能以幂函数为背景进行基本的函数图像的平移和对称变换、

三、教学流程设计

设置情境→探索研究→总结提炼→尝试应用→练习回馈→设置评价

五、教学过程设计

1、情境设置

指导学生描画一些典型的幂函数的图像,回忆并归纳幂函数的性质、

2、探索研究

问题:如图所示的分别是幂函数①,②,③,④,⑤,⑥,⑦在坐标系中第一象限内的图像,请尽可能精确地将指数的范围分别确定出来

3、总结提炼

揭示幂函数图像特征与底数的依赖关系、师生共同整理出规律性结论、

4、尝试应用

①(1)研究函数的图像之间的关系;

(2)在同一坐标中作上述函数的图像;

(3)由所作函数的图像判断最后一个函数的奇偶性、单调性、

②已知函数

(1)试求该函数的零点,并作出图像;

(2)是否存在自然数,使=1000,若存在,求出;若不存在,请说明理由、

③作函数的大致图像、

5、练习回馈

课本第83页练习4、1(2)

六、教学评价设计

习题4、1——

b组(根据学生具体情况选用)

必修二数学教案篇3

1、教材(教学内容)

本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用、

2、设计理念

本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。整堂课先通过问题引导学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,最后通过例题与练习,将任意角三角函数的定义,内化为学生新的.认识结构,从而达成教学目标、

3、教学目标

知识与技能目标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题、

过程与方法目标:体会数学建模思想、类比思想和化归思想在数学新概念形成中的重要作用、

情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、

4、重点难点

重点:任意角三角函数的定义、

难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、

5、学情分析

学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念、在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单位园的交点的坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构、

6、教法分析

“问题解决”教学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的思维过程,最后在解决问题的过程中形成新的认知结构、这种教学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用、

7、学法分析

本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标、

必修二数学教案篇4

教学目标:

1、理解集合的概念和性质。

2、了解元素与集合的表示方法。

3、熟记有关数集。

4、培养学生认识事物的能力。

教学重点:

集合概念、性质

教学难点:

集合概念的理解

教学过程:

1、定义:

集合:一般地,某些指定的对象集在一起就成为一个集合(集)。元素:集合中每个对象叫做这个集合的元素。

由此上述例中集合的元素是什么?

例(1)的元素为1、3、5、7,

例(2)的元素为到两定点距离等于两定点间距离的点,

例(3)的元素为满足不等式3x—2> x+3的实数x,

例(4)的元素为所有直角三角形,

例(5)为高一·六班全体男同学。

一般用大括号表示集合,{?}如{我校的.篮球队员},{太平洋、大西洋、印度洋、北冰洋}。则上几例可表示为??

为方便,常用大写的拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}

(1)确定性;(2)互异性;(3)无序性。

3、元素与集合的关系:隶属关系

元素与集合的关系有“属于∈”及“不属于?(?也可表示为)两种。如a={2,4,8,16},则4∈a,8∈a,32?a。

集合的元素通常用小写的拉丁字母表示,如:a是集合a的元素,就说a属于集a记作a?a,相反,a不属于集a记作a?a(或)

注:1、集合通常用大写的拉丁字母表示,如a、b、c、p、q??

元素通常用小写的拉丁字母表示,如a、b、c、p、q??

2、“∈”的开口方向,不能把a∈a颠倒过来写。

4

注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。

(2)非负整数集内排除0的集。记作nxx或n+ 。q、z、r等其它数集内排除0

的集,也是这样表示,例如,整数集内排除0的集,表示成zxx

请回答:已知a+b+c=m,a={x|ax2+bx+c=m},判断1与a的关系。

必修二数学教案篇5

(一)课标要求

本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习目标:

(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。

(二)编写意图与特色

1.数学思想方法的重要性

数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。

本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。

教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”设置这些问题,都是为了加强数学思想方法的教学。

2.注意加强前后知识的联系

加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。

本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”这样,从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。

?课程标准》和教科书把“解三角形”这部分内容安排在数学五的第一部分内容,

位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,这使这部分内容的处理有了比较多的工具,某些内容可以处理得更加简洁。比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对于三角形进行讨论,方法不够简洁,教科书则用了向量的方法,发挥了向量方法在解决问题中的威力。

在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的'比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?”,并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.”

3.重视加强意识和数学实践能力

学数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。

(三)教学内容及课时安排建议

1.1正弦定理和余弦定理(约3课时)

1.2应用举例(约4课时)

1.3实习作业(约1课时)

(四)评价建议

1.要在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。在对于正弦定理和余弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自己对于定理的证明。如对于正弦定理,可以启发得到有应用向量方法的证明,对于余弦定理则可以启发得到三角方法和解析的方法。在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较。对于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法。

2.适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题的解决实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果能力,增强学生应用数学的意识和数学实践能力。教师要注意对于学生实习作业的指导,包括对于实际测量问题的选择,及时纠正实际操作中的错误,解决测量中出现的一些问题。

必修二数学教案5篇相关文章:

二年级下学期语文工作计划5篇

小学教师第二学期总结5篇

大班第二学期班级工作计划5篇

大学生二学期自我总结5篇

九一二运动的演讲稿通用5篇

浪地球二,观后感推荐5篇

冰心繁星一零二读后感5篇

二上班队工作总结推荐5篇

我喜欢的花二年级作文5篇

二年级上册美术教学工作计划5篇

必修二数学教案5篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
78299